What will we cover?

Specifying a suitable DTSA model	§11.1 §11.2	p.358 p.369
Fitting the DTSA model to data	§11.3	p.378
Interpreting the parameter estimates	§11.4	p.386
Displaying fitted hazard and survivor functions	§11.5	p.391
Comparing DTSA models using goodness-of-fit statistics.	§11.6	p.397

1

Establishing the Discrete-Time Survival Analysis Model

(ALDA, Ch. 11)

John Willett & Judy Singer

Harvard University Graduate School of Education May, 2003

Specifying the DTSA Model Data Example: *Grade at First Intercourse*

- *Research Question*: Whether, and when, adolescent males experience heterosexual intercourse for the first time?
- Citation: Capaldi, et al. (1996).
- Sample: 180 high-school boys.
- Research Design:
 - Event of interest is the first experience of heterosexual intercourse.
 - Boys tracked over time, from 7th thru 12th grade.
 - 54 (30% of sample) were virgins (censored) at end of data collection.

Specifying the DTSA Model

Extract from the Person-Level & Person-Period Datasets Grade at First Intercourse (ALDA, Fig. 11.5, p. 380)

"Person-Period" data set

Specifying the DTSA Model Estimating Sample Hazard & Survival Probabilities *Grade at First Intercourse (ALDA, Table 11.1, p. 360)*

	Speci	ifying the I	DTSA M	Iodel
Introd	ucing a Pre	dictor into t	the Perso	on-Period Dataset
Grade	e at First Inte	ercourse (fro	m ALDA,	, Fig. 11.5, p. 380)
ID	PERIOD	EVENT	PT	
193	7	0	1	

193	7	0	1	
193	8	0	1	
193	9	1	1	
126	7	0	1	
126	8	0	Ι	
126	9	0	1	
126	10	0	1	
126	11	0	1	
126	12	1	I	
407	7	0	0	
407	8	0	0	
407	9	0	0	
407	10	0	0	
407	11	0	0	
407	12	0	0	
			[\searrow
			1	

Time-invariant predictor, PT, indicates the presence/absence of a "parenting transition" during the boy's early life:

- 0 = boy lived with both biological parents thru 7th grade (n=72, 40% of sample).
- 1 = boy experienced one or more parenting transitions, up thru 7th grade (n=108, 60% of sample).

Specifying the DTSA Model

What Impact Does Predictor PT have? Computing Sample Hazard & Survivor Probabilities, by *PT Grade at First Intercourse (from ALDA, Table 11.1, p. 360)*

	1	Number who	•		
Grade	Were at risk (virgins) at the beginning of the grade	Had sex during the grade	Were censored at the end of the grade	Hazard probability	Survival probability
No Pare	enting Transitions (PT = 0)			
7	72	2	0	0.0278	0.9722
8	70	2	0	0.0286	0.9444
9	68	8	0	0.1176	0.8333
10	60	8	0	0.1333	0.7222
11	52	10	0	0.1923	0.5833
12	42	8	34	0.1905	0.4722
One or	More Parenting Tr	ansitions (PT =	= 1)		
7	108	13	0	0.1204	0.8796
8	95	5	0	0.0526	0.8333
9	90	16	0	0.1778	0.6852
10	74	21	0	0.2838	0.4907
11	53	15	0	0.2830	0.3519
12	38	18	20	0.4737	0.1852

What are the necessary features of a reasonable statistical model for discrete-time logit-hazard?

They include:

- For each predictor value, there is a *population logit-hazard function*.
- Each population logit-hazard function has an *identical shape*, regardless of predictor value.
- Differences in predictor value "*shift*" the logit-hazard function "*vertically*"
 - So, the vertical "distance" between pairs of hypothesized logithazard functions is the same in every time period.

And specify a *statistical model for discrete-time logit-hazard* that looks like this:

logit
$$h(t_{ij}) = [\alpha_7 D_7 + ... + \alpha_j D_j + ... + \alpha_{12} D_{12}] + \beta_1 P T_i$$

How does the model work? How do we fit it to data?

Othe Grade at Fir	Specifying the r Ways of Writi st Intercourse Da	ng the DTSA Model the DTSA Model tha (ALDA, Table 11.2, p. 376)
Original scale	Desired scale	Use the transformation
Logit	Odds	$Odds = e^{\log it}$
Odds	Probability	$Probability = \frac{odds}{1 + odds} = \frac{e^{\text{logit}}}{1 + e^{\text{logit}}}$
Logit	Probability	$Probability = \frac{1}{1 + e^{-\log it}}$

So, you can "de-transform" the entire logit-hazard model, and it starts to look *recognizable* (?):

Fitting the DTSA Model to Data
First, Add a Continuous Predictor to the pp Dataset
Grade at First Intercourse Data (ALDA, Fig. 11.5, p. 380)

"Person-Period" data set

ID	PERIOD	Ď7	D8	D9	D10	D11	D12	EVENT	PT	PAS
193	7	1	0	0	0	0	0		1	1.16
193	8	0	1	0	0	0	0	0	1	1.16
193	9	0	0	1	0	_0	0	1	1	1.16
126	7	1	0	0		0	0	0	1	0.12
126	8	0	1	0	0	0	0	0	1	0.12
126	9	0	0	1	0	0	0	0	1	0.12
126	10	0	0	0	1	0	0	0	1	0.12
126	11	0	0	0	0	1	0	0	1	0.12
126	12	0	0	0	0	_0	1	1	1	0.12
407	7	1			0	0	0	0	0	-0.96
407	8	0	1	0	0	0	0	0	0	-0.96
407	9	0	0	1	0	0	0	0	0	-0.96
407	10	0	0	0	1	0	0	0	0	-0.96
407	11	0	0	0	0	1	0	0	0	-0.96
407	12	0	_ 0	0	0	0	1	0	0	-0.96
							_			

PAS is a *continuous* time-invariant measure of parents' antisocial behavior during the child's formative years. Scores on the measure have been standardized to mean 0, standard deviation 1.

Fitting the DTSA Model to Data Use Logistic Regression Analysis in the PP Dataset *Grade at First Intercourse*

Use *logistic regression* analysis to fit the hypothesized DTSA model in the *person-period dataset*.

Treat *EVENT* as the outcome, and regress it on the predictors:
•Time indicators, D₁ thru D_J,
•Substantive predictors, PT and PAS.
Using sensible data-analytic practices.

All parameter estimates, standard errors, t- and z-statistics, goodness-of-fit statistics, and tests will be correct for the discrete-time hazard model

Fitting the DTSA Model to Data

Using Sensible Data-Analytic Skills to Produce a Taxonomy of Fitted DTSA Models Grade at First Intercourse (ALDA, Table 11.3., p. 386)

	Model A	Model B	Model C	Model D
Parameter Estimat	tes and Asymptot	ic Standard Errors		
D_7	-2.3979***	-2.9943 * * *	-2.4646***	-2.8932***
	(0.2697)	(0.3175)	(0.2741)	(0.3206)
D_8	-3.1167***	-3.7001 ***	-3.1591 ***	-3.5847***
	(0.3862)	(0.4206)	(0.3890)	(0.4231)
D_9	-1.7198***	-2.2811***	-1.7297 ***	-2.1502***
	(0.2217)	(0.2724)	(0.2245)	(0.2775)
D_{10}	-1.2867 ***	-1.8226***	-1.2851 * * *	-1.6932***
	(0.2098)	(0.2585)	(0.2127)	(0.2647)
D_{11}	-1.1632 ***	-1.6542***	-1.1360***	-1.5177***
	(0.2291)	(0.2691)	(0.2324)	(0.2757)
D_{12}	-0.7309**	-1.1791***	-0.6421**	-1.0099***
	(0.2387)	(0.2716)	(0.2428)	(0.2811)
PT	······	0.8736***		0.6605**
		(0.2174)		(0.2367)
PAS			0.4428***	0.2964*
			(0.1140)	(0.1254)
Goodness-of-fit				
LL	-325.98	-317.33	-318.59	-314.57
Deviance	651.96	634.66	637.17	629.15
n parameters	6	7	7	8
AIC	663.96	648.66	651.17	645.15
BIC	681.00	668.54	671.05	667.87
Deviance-based Hy	pothesis Tests			
$H_0: \beta_{PT} = 0$		17.30^{***} (1)		8.02** (1)
$\mathbf{H}_0: \boldsymbol{\beta}_{PAS} = 0$			14.79*** (1)	5.51* (1)
Wald Hypothesis T	Tests			
$\mathbf{H}_{0}: \boldsymbol{\beta}_{PT} = 0$		16.15^{***} (1)		7.79** (1)
$\mathbf{H}_0: \boldsymbol{\beta}_{PAS} = 0$			15.10*** (1)	5.59* (1)

 $\sim p < .10; * p < .05; ** p < .01; *** p < .001.$

Interpreting Parameter Estimates Interpreting Parameters Associated w/ the Time Dummies *Grade at First Intercourse (ALDA, Figs. 11.3 & 11.4, 386-8)*

Displaying Fitted Functions

Fitted values for two prototypical boys

	Model A	Model B	Model C	Model D
Parameter Estin	nates and Asymptoti	c Standard Errors		
D_7	-2.3979***	-2.9943***	-2.4646***	-2.8932***
	(0.2697)	(0.3175)	(0.2741)	(0.3206)
D_8	-3.1167 * * *	-3.7001 ***	-3.1591 ***	-3.5847***
	(0.3862)	(0.4206)	(0.3890)	(0.4231)
D_9	-1.7198***	-2.2811***	-1.7297***	-2.1502***
	(0.2217)	(0.2724)	(0.2245)	(0.2775)
D_{10}	-1.2867 ***	-1.8226***	-1.2851 * * *	-1.6932***
	(0.2098)	(0.2585)	(0.2127)	(0.2647)
D_{11}	-1.1632***	-1.6542***	-1.1360***	-1.5177***
	(0.2291)	(0.2691)	(0.2324)	(0.2757)
D_{12}	-0.7309 **	-1.1791 ***	-0.6421 **	-1.0099 ***
	(0.2387)	(0.2716)	(0.2428)	(0.2811)
PT		0.8736***		0.6605**
		(0.2174)		(0.2367)
PAS		(,	0.4428***	0.2964*
			(0.1140)	(0.1254)
Coodman of fa				
Goodness-oi-int	995 09	917 99	910 50	914 57
LL Dorrign co	-525.96	-517.55	-316.39	-514.57
Deviance	6	034.00	037.17	029.15
AIC	668.06	649.66	651 17	0 645 15
BIC	681.00	668 54	671.05	667.97
bic	031.00	000.34	071.05	007.87
Deviance-based	Hypothesis Tests			
$\mathbf{H}_0: \boldsymbol{\beta}_{PT} = 0$		17.30*** (1)		8.02** (1)
$\mathbf{H}_0: \boldsymbol{\beta}_{PAS} = 0$			14.79*** (1)	5.51* (1)
Wald Hypothesis	s Tests			
$H_0: \beta_{PT} = 0$		16.15^{***} (1)		7.79** (1)
$H_0: \beta_{PAS} = 0$			15.10***(1)	5.59* (1)