Examples of "local" and "global" explanations

Strand	Local explanation	Global explanation
Numbers and Operations:	The $2/3$ is missing $1/3$ and the $\frac{3}{4}$ is	Both fractions are missing one piece to
	missing $\frac{1}{4}$. One third is bigger than $\frac{1}{4}$.	complete the whole: $2/3$ is missing $1/3$
Which is larger $2/3$ or $3/4$?	Because for the 1/3 we're taking a	and $\frac{3}{4}$ is missing $\frac{1}{4}$. One third is bigger
	bigger piece than for the $\frac{1}{4}$, $\frac{2}{3}$ is	than ¹ / ₄ because <i>the larger the</i>
	smaller than $\frac{3}{4}$.	denominator, the smaller the pieces. So,
		for the 2/3 we're taking away a bigger
		piece from the whole compared to what
		we're taking for ³ / ₄ . So, 2/3 is smaller
		than ³ / ₄ .
Numbers and Operations:	The biggest number is 941. This is	The biggest number is 941. This is how I
	how I thought: I first put the 9 in the	thought: the hundreds place has the most
Which is the largest number you can make using	hundreds place and then considered	value. So, I needed to put the bigger digit
the following digits?	what numbers I could make by	in this place. So, I put 9 into the hundreds
	switching the order of 4 and 1. This	place. Then, the tens place also has a
9 1 4	gave me 914 and 941. I did the same	larger value than the ones place. So, I
	with 1 and 4. So, I got the following	put 4 in the tens place, which left the 1
	numbers: 914, 941, 149, 194, 491, and	for the ones place.
	419. And 941 is definitely the largest.	

Algebra:	Well, the first train has a perimeter of	Well, I noticed <i>a pattern</i> . The second
What is the perimeter of a hexagon "train" with six "wagons?" Number of hexagons 1 2 3 Perimeter 6 10 14	six sticks; the second a perimeter of 11 sticks, and the third a perimeter of 16 sticks. I noticed that if we join these three trains we get a train with six "wagons." So, the perimeter is 6+11+16, which is 33 sticks. However, if we join these "wagons," we need to subtract 2, because the first train will have a common side with the second train and the second train a common side with the third train. So, the	train has five sticks more than the first train; the third train has 5 plus 5 more sticks than the first train. So, the sixth train will have 5x5 more sticks than the first train. This is because the sixth train has five more "wagons" than the first train, and <i>for each</i> additional "wagon," we're adding 5 sticks. So, the sixth train will have 5 sticks from the first train plus 25 sticks that I get from timising 5 times 5—so, it will have a perimeter of 31
	perimeter will be 31 sticks.	sticks.
Geometry	There is none. The biggest angle in this triangle is obtuse, so it is more	We know that if we add up all the angles in a triangle, we're going to get 180° .
How many right angles are there in the	than 90° . I also measured the other two	The biggest angle is this triangle seemed
following triangle? (from NAEP, 8 th grade)	angles, and I found that each is less than 90° . So, there are no right angles in this triangle.	to be <i>obtuse</i> . Indeed, when I measured it, I found that it was more than 90° . <i>That</i> <i>means that together the other two angles</i> <i>are less than</i> 90° . So, no right angles in this triangle; sorry!

Measurement: You and your friends are really hungry. You can either order two medium pizzas or one large pizza. What would you prefer?	Definitely the larger pizza. We know that the area of a circle is pi times the square of the radius. So, the large pizza has an area of 16x16x pi, which is about 804 square centimeters. The medium one has an area of 8x 8 x pi which is about 201 square centimeters. So, definitely the larger pizza.	Definitely the larger pizza. We know that the area of a circle is pi times the square of the radius. <i>Because the radius of the</i> <i>larger pizza is twice as big as that of the</i> <i>medium pizza</i> , the larger pizza is four times bigger than the medium pizza.
---	--	--

Data analysis and probability Angie argues that if we spin this spinner, the probability of getting a pentagon is equal to the probability of getting a rhombus or a triangle. Is she right?	Yes, Angie is right. The probability of getting a pentagon is $\frac{1}{2}$ and the probability of getting a triangle is $\frac{1}{4}$; which is also the probability of getting a rhombus. So, the probability of getting a rhombus or a triangle is equal to $\frac{1}{4}$ plus $\frac{1}{4}$, which is $\frac{1}{2}$ because $2/4 = \frac{1}{2}$. So, the probability of getting a pentagon is equal to the probability of getting a rhombus or a triangle.	Yes, Angie is right because the <i>probability we get depends on the area that each shape covers</i> . The pentagon covers half of the circle. The rhombus and the triangle together also cover half of the circle. So, because these two shapes <i>cover the same area</i> as the pentagon, the probability of getting a pentagon is equal to the probability of getting a rhombus or a triangle.
--	---	--